Advanced information technology infrastructure is being employed increasingly in the Earth sciences to provide researchers with efficient access to massive databases and an ability to integrate diversely formatted information from a variety of sources.

A range of geoinformatics initiatives are enabling manipulation, modeling, and visualization of Earth Science data and are helping to develop integrated Earth models at various scales, and from the near surface to the deep interior.

This book provides a series of case studies that demonstrate the use of cyber-infrastructure across the Earth Sciences. Chapters are grouped thematically into sections that cover data collection and management; modeling and community computational codes; visualization and data representation; knowledge management and data integration; web services and scientific workflows.

Geoinformatics is a fascinating and accessible introduction to this emerging field for readers across the solid Earth sciences and is an invaluable reference for researchers interested in initiating new cyberinfrastructure projects of their own.

G. Randy Keller is a Professor of Geophysics and McCullogh Chair at the Mewbourne College of Earth and Energy, University of Oklahoma.

Chaitanya Baru is a Distinguished Scientist at the San Diego Supercomputer Center, University of California-San Diego.

The two editors have collaborated since the emergence of geoinformatics as an organized scientific initiative in the USA in the late 1990s – helping to lead and organize the US Geoinformatics initiative and communicate its potential to colleagues around the world, both informally and through many appointments to advisory committees. Both Professor Keller and Dr. Baru are also Principal Investigators on the GEON (Geoscience Network) project that is a major effort funded by the National Science Foundation. While early geoinformatics programmes focused on database creation and on the development of highly functional software tools, these have since been merged with other efforts, such as high-performance computing and integrated earth-system modeling, to create a more extensive cyberinfrastructure for the geosciences. Dr. Baru’s work at the San Diego Supercomputer Center has involved cyberinfrastructure activities across a range of scientific subject areas, while Professor Keller’s research has focused on applications specific to the geosciences.
Contents

List of contributors

Preface

Introduction
1 Science needs and challenges for geoinformatics
 G. RANDY KELLER
2 Introduction to IT concepts and challenges
 CHAITANYA BARU

Part I Case studies from other disciplines
3 Semantic cyberinfrastructure: The Virtual Solar-Terrestrial Observatory
 PETER FOX, DEBORAH L. MCGUINNESS, AND THE VSTO TEAM
4 Cyberinfrastructures for life sciences and biomedicine
 SRIRAM KRISHNAN AND RAVI MADDURI

Part II Modeling software and community codes
5 Development, verification, and maintenance of computational software in
 geodynamics
 MICHAEL GURNIS, WALTER LANDRY, EH TAN, LUIS ARMENDARIZ,
 LEIF STRAND, AND MICHAEL AIVAZIS
6 Parallel finite element modeling of multi-timescale faulting
 and lithospheric deformation in western USA
 MIAN LIU, YOUPING YANG, QINGSONG LI, GANG LUO,
 AND HUAI ZHANG
7 Next-generation plate-tectonic reconstructions using GPlates
 JAMES A. BOYDEN, R. DIETMAR MÜLLER, MICHAEL GURNIS, TROND
 H. TORSVIK, JAMES A. CLARK, MARK TURNER, HAMISH IVEY-LAW,
 ROBIN J. WATSON, AND JOHN S. CANNON
Part III Visualization and data representation

8 Visualization of seismic model data
 AMIT CHOUBASIA

9 The UNAVCO GEON Integrated Data Viewer for exploration, analysis, and integration of geoscience data
 STUART WIER AND CHARLES MEERTENS

Part IV Knowledge management and data integration

10 Data and tools for geologic timelines and timescales
 PETER M. SADLER AND CINZIA CERVATO

11 Modeling geodynamic processes with ontologies
 HASSAN A. BABAIE

Part V Web services and scientific workflows

12 Service orientation in the design of a community hydrologic information system
 ILYA ZASLAVSKY AND DAVID R. MAIDMENT

13 Web services for seismic data archives
 ROBERT CASEY AND TIMOTHY K. AHERN

14 Development of robust data system for gravity and magnetic anomaly data: A case study of a community-based effort for point data
 RAED ALDOURI AND G. RANDY KELLER

15 Scientific workflows for the geosciences: An emerging approach to building integrated data analysis systems
 ILKAY ALTINTAS, DANIEL CRAWL, CHRISTOPHER J. CROSBY, AND PETER CORNILLON

16 Online access and processing of LiDAR topography data
 CHRISTOPHER J. CROSBY, J RAMÓN ARROWSMITH, VISWANATH NANDIGAM, AND CHAITANYA BARU

17 Use of abstraction to support geoscientists’ understanding and production of scientific artifacts
 ANN Q. GATES, PAULO PINHEIRO DA SILVA, LEONARDO SALAYANDIA, OMAR OCHOA, AIDA GANDARA, AND NICHOLAS DEL RIO

Part VI Emerging international and other efforts

18 It’s not your data, it’s everyone’s: The benefits of a corporate approach to scientific information
 IAN JACKSON AND RICHARD HUGHES

19 TOPO-EUROPE and cyberinfrastructure: Quantifying coupled deep earth – surface processes in 4-D
 S. A. P. L. CLOETINGH, H. P. BUNG, AND THE TOPO-EUROPE WORKING GROUP
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>OneGeology – from concept to global project</td>
<td>Ian Jackson</td>
<td>317</td>
</tr>
<tr>
<td>21</td>
<td>Geoinformatics developments in Germany</td>
<td>Jens Klump, Joachim Wächter, Peter Löwe, Ralf Bill, and Matthias Lendholt</td>
<td>323</td>
</tr>
<tr>
<td>22</td>
<td>iGEON: Networking the Indian geosciences community through GEON</td>
<td>K. V. Subbarao, Arun Agarwal, Rajeev Wankar, and Chaitanya Baru</td>
<td>332</td>
</tr>
<tr>
<td>23</td>
<td>Geoinformatics in the public service: Building a cyberinfrastructure across the geological surveys</td>
<td>M. Lee Allison, Linda C. Gundersen, and Stephen M. Richard</td>
<td>342</td>
</tr>
<tr>
<td>24</td>
<td>Application of the US Geoscience Information Network to deploying a national geothermal data system</td>
<td>Stephen M. Richard, Ryan Clark, and Wolfgang Grunberg</td>
<td>350</td>
</tr>
</tbody>
</table>

Index

371

The color plate section can be found between pages 114 and 115.